Fumarate regulation of gene expression in Escherichia coli by the DcuSR (dcuSR genes) two-component regulatory system.

نویسندگان

  • E Zientz
  • J Bongaerts
  • G Unden
چکیده

In Escherichia coli the genes encoding the anaerobic fumarate respiratory system are transcriptionally regulated by C4-dicarboxylates. The regulation is effected by a two-component regulatory system, DcuSR, consisting of a sensory histidine kinase (DcuS) and a response regulator (DcuR). DcuS and DcuR are encoded by the dcuSR genes (previously yjdHG) at 93.7 min on the calculated E. coli map. Inactivation of the dcuR and dcuS genes caused the loss of C4-dicarboxylate-stimulated synthesis of fumarate reductase (frdABCD genes) and of the anaerobic fumarate-succinate antiporter DcuB (dcuB gene). DcuS is predicted to contain a large periplasmic domain as the supposed site for C4-dicarboxylate sensing. Regulation by DcuR and DcuS responded to the presence of the C4-dicarboxylates fumarate, succinate, malate, aspartate, tartrate, and maleate. Since maleate is not taken up by the bacteria under these conditions, the carboxylates presumably act from without. Genes of the aerobic C4-dicarboxylate pathway encoding succinate dehydrogenase (sdhCDAB) and the aerobic succinate carrier (dctA) are only marginally or negatively regulated by the DcuSR system. The CitAB two-component regulatory system, which is highly similar to DcuSR, had no effect on C4-dicarboxylate regulation of any of the genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical control of anaerobic gene expression in Escherichia coli K-12: the nitrate-responsive NarX-NarL regulatory system represses synthesis of the fumarate-responsive DcuS-DcuR regulatory system.

Hierarchical control ensures that facultative bacteria preferentially use the available respiratory electron acceptor with the most positive standard redox potential. Thus, nitrate is used before other electron acceptors such as fumarate for anaerobic respiration. Nitrate regulation is mediated by the NarX-NarL two-component system, which activates the transcription of operons encoding nitrate ...

متن کامل

DNA interaction and phosphotransfer of the C4-dicarboxylate-responsive DcuS-DcuR two-component regulatory system from Escherichia coli.

The DcuS-DcuR system of Escherichia coli is a two-component sensor-regulator that controls gene expression in response to external C(4)-dicarboxylates and citrate. The DcuS protein is particularly interesting since it contains two PAS domains, namely a periplasmic C(4)-dicarboxylate-sensing PAS domain (PASp) and a cytosolic PAS domain (PASc) of uncertain function. For a study of the role of the...

متن کامل

The Expression of Human Granulocyte Macrophage Colony Stimulating Factor by Heat-Induction in Escherichia coli

A self-regulated high-copy number plasmid containing chloramphenicol resistant gene, for the production of recombinant proteins under the regulation of bacteriophage ?pL promoter, was constructed. The designed 5024 base pair expression plasmid contained a heat sensitive repressor cI857 coding gene to regulate the function of ?pL promoter under heat shock induction. Using the constructed vector,...

متن کامل

Expression of a Chimeric Protein Containing the Catalytic Domain of Shiga-Like Toxin and Human Granulocyte Macrophage Colony-Stimulating Factor (hGM-CSF) in Escherichia coli and Its Recognition by Reciprocal Antibodies

Fusion of two genes at DNA level produces a single protein, known as a chimeric protein. Immunotoxins are chimeric proteins composed of specific cell targeting and cell killing moieties. Bacterial or plant toxins are commonly used as the killing moieties of the chimeric immunotoxins. In this investigation, the catalytic domain of Shiga-like toxin (A1) was fused to human granulocyte macrophage ...

متن کامل

Citrate utilization by Corynebacterium glutamicum is controlled by the CitAB two-component system through positive regulation of the citrate transport genes citH and tctCBA.

In this work, the molecular basis of aerobic citrate utilization by the gram-positive bacterium Corynebacterium glutamicum was studied. Genome analysis revealed the presence of two putative citrate transport systems. The permease encoded by citH belongs to the citrate-Mg(2+):H(+)/citrate-Ca(2+):H(+) symporter family, whereas the permease encoded by the tctCBA operon is a member of the tripartit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 180 20  شماره 

صفحات  -

تاریخ انتشار 1998